Existence of Complete Conformal Metrics of Negative Ricci Curvature on Manifolds with Boundary
نویسندگان
چکیده
We show that on a compact Riemannian manifold with boundary there exists u ∈ C(M) such that, u|∂M ≡ 0 and u solves the σk-Ricci problem. In the case k = n the metric has negative Ricci curvature. Furthermore, we show the existence of a complete conformally related metric on the interior solving the σk-Ricci problem. By adopting results of [14], we show an interesting relationship between the complete metrics we construct and the existence of Poincaré-Einstein metrics. Finally we give a brief discussion of the corresponding questions in the case of positive curvature.
منابع مشابه
Warped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملUnique Continuation Results for Ricci Curvature and Applications
Unique continuation results are proved for metrics with prescribed Ricci curvature in the setting of bounded metrics on compact manifolds with boundary, and in the setting of complete conformally compact metrics on such manifolds. Related to this issue, an isometry extension property is proved: continuous groups of isometries at conformal infinity extend into the bulk of any complete conformall...
متن کاملMetrics with Non-negative Ricci Curvature on Convex Three-manifolds
We prove that the space of smooth Riemannian metrics on the three-ball with non-negative Ricci curvature and strictly convex boundary is path-connected; and, moreover, that the associated moduli space (i.e., modulo orientation-preserving diffeomorphisms of the threeball) is contractible. As an application, using results of Maximo, Nunes, and Smith [MNS], we show the existence of properly embedd...
متن کاملUnique Continuation Results for Ricci Curvature
Unique continuation results are proved for metrics with prescribed Ricci curvature in the setting of bounded metrics on compact manifolds with boundary, and in the setting of complete conformally compact metrics on such manifolds. In addition, it is shown that the Ricci curvature forms an elliptic system in geodesic-harmonic coordinates naturally associated with the boundary data.
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009